广告招募

基于数字图像处理技术的岩石节理宽度测量

2025年10月17日 13:35:36      来源:长沙艾克赛普仪器设备有限公司 >> 进入该公司展台      阅读量:3

分享:

    岩体节理裂隙宽度的测量在地质勘探、矿山工程、公路铁路建设和核电工程等诸多工程领域都有广泛的应用。但是由于裂隙形成原因的多样化,给它的测量与研究带来了极大难度。一种的测量宽度的方法,就是用卡钳(测径仪)来测量节理裂隙二侧岩体断裂面的垂直距离。这种方法受人为因素和仪器精度的影响很大,结果不稳定且数据不精确。而对于岩体微裂隙的测量来说,则只能在显微镜下进行。一般采用的方法是:首先对对象岩体取样,并从中采集数字图像信息,然后沿用传统的人工测量方法,对图像中的目标物体进行测量,最后得出测量结果。这种方法只是在数据采集时提高了精确度,但在测量过程中由于缺少对现有图像分析技术的应用,测量结果并不理想。目前常用的图像分析技术主要是一些图像测量算法,其中有:当量圆直径算法,当量椭圆长、短轴算法等。它们都能对一定条件下的图形进行稳定、精确的测量,但是单独使用一种算法又有局限性。用于节理裂隙等面积的圆形的直径计算裂隙的宽度(当量圆直径算法),这种方法实现简单但适用范围有限,要求被测对象的边界起伏较大才可以达到满意效果。用于节理裂隙等面积的椭圆的短轴计算裂隙的宽度(简称椭圆算法),这种方法实现起来十分复杂,但效果较好,实际中仍有应用。此外,简单Ferret算法(也称Ferret Box算法)[1]采用测量与目标物体相切的2条平行线之间距离的方法来确定不规则图形的长、宽等几何特征,但是这种方法由于缺少对测量方向的确定,使得宽度值不稳定,需要进一步改进。

    本文以简单Ferret算法为基础,介绍其改进算法,并通过对一个岩石节理裂隙的实际测量过程的介绍和测量结果分析,对比了改进的Ferret算法和目前常用的测量算法的优劣。
1  数字图像处理原理及算法
  在数字图像处理技术中,对不规则二维几何图形的测量多采用多边形近似的方法[2]。对于复杂的不规则二维几何图形来说,通常借用规则的几何图形对它们进行近似计算,从而获得被测目标图形的几何特征值。需要注意的是,在对图像中的目标物体进行测量之前,一般先要对原始图像进行二值化处理[2],然后再以二值图为基础进行测量分析。
1.1 简单Ferret算法原理
  简单Ferret算法首先从二值图的边界任选一点,经过此点做图形的切线。取与该切线平行的直线,使它与图形的另外一侧边界相切,当这2条切线间的垂直距离时,此时的距离为被测图形的长度值;当垂直距离达到最小时为被测图形的宽度值。用Ferret Box测量不规则图形的宽度示意图如图1所示。图中Fm为值。

 

  可以看出这种算法虽然简单却存在缺陷。原因是:要想找到垂直距离的值和最小值,就要进行多次取值和比较,对于边界变化频繁的图形来说操作十分繁琐。而且这种方法对于凸多边形比较适用,对于凹多边形特别像节理裂隙这样边界变化很大的复杂图形来说确定切线存在难度,这将影响测量工作的准确度。下面将以简单Ferret算法为基础,介绍一种比较稳定的测量宽度的算法——改进的Ferret算法。
1.2 改进的Ferret算法原理
  改进的Ferret算法充分利用了二维几何图形的旋转不变性原理,弥补了简单Ferret算法不易测量凹多边形的缺陷,原理步骤如下。
  (1)使用求最小二阶矩的方法,惟一确定测量不规则图形宽度的参考方向。
  (2)以确定的参考方向为基准,再采用Ferret Box的方法获得图形的长度和宽度。
  可以看出改进的Ferret算法主要是增加了确定方向的方法,它使得宽度的测量结果趋于稳定。
 

版权与免责声明:
1.凡本网注明"来源:全球供应商网"的所有作品,版权均属于全球供应商网,转载请必须注明全球供应商网。违反者本网将追究相关法律责任。
2.企业发布的公司新闻、技术文章、资料下载等内容,如涉及侵权、违规遭投诉的,一律由发布企业自行承担责任,本网有权删除内容并追溯责任。
3.本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。 4.如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系。